Jia Wang 1,2,*Ming Zeng 1,2Dazhang Li 1,2Xiaoning Wang 1,2[ ... ]Jie Gao 1,2
Author Affiliations
Abstract
1 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
We propose a new injection scheme that can generate electron beams with simultaneously a few permille energy spread, submillimeter milliradian emittance, and more than a 100 pC charge in laser wakefield accelerators. In this scheme, a relatively loosely focused laser pulse drives the plasma wakefield, and a tightly focused laser pulse with similar intensity triggers an interference ring pattern that creates onion-like multisheaths in the plasma wakefield. Owing to the change in wavefront curvature after the focal position of the tightly focused laser, the innermost sheath of the wakefield expands, which slows down the effective phase velocity of the wakefield and triggers injection of plasma electrons. Both quasicylindrical and fully three-dimensional particle-in-cell simulations confirm the generation of beams with the above mentioned properties.
Matter and Radiation at Extremes
2022, 7(5): 054001
王晓宁 1,2高杰 1,2安维明 3,*王佳 1,2[ ... ]鲁巍 4
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049
2 中国科学院大学,北京 100049
3 北京师范大学 天文系,北京 100875
4 清华大学 工程物理系,北京100084
针对空泡机制中的双束等离子体尾波电子加速设计,给出了能够快速得到被加速束流在最大加速距离下的相对能散的预测公式。通过加速初始时刻束流纵向分布以及束流所处位置的纵向尾波场可得到束流最终相对能散。该预测公式不仅可应用于驱动束流与被加速束流初始能量相同的情况,还可应用于两个束流初始能量不相同的情况。由该预测公式得到的束流相对能散与被加速束流和驱动束流的初始能量的比值有关,而与两个束流初始能量的数值无关。利用准静态近似的粒子网格模拟程序QuickPIC对理论进行了模拟验证,模拟结果与理论预期结果一致。
等离子体尾波加速 电子加速 双束团 相对能散 粒子网格模拟 plasma wakefield acceleration electron acceleration two-bunch relative energy spread particle-in-cell simulation 
强激光与粒子束
2022, 34(4): 049002
Author Affiliations
Abstract
1 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
2 IFSA Collaborative Innovation Center and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
3 Beijing National Research Center of Condensed Matter Physics, Institute of Physics, CAS, Beijing100190, China
4 Institute of High Energy Physics, CAS, Beijing100049, China
We demonstrate an all-optical method for controlling the transverse motion of an ionization injected electron beam in a laser plasma accelerator by using the transversely asymmetrical plasma wakefield. The laser focus shape can control the distribution of a transversal wakefield. When the laser focus shape is changed from circular to slanted elliptical in the experiment, the electron beam profiles change from an ellipse to three typical shapes. The three-dimensional particle-in-cell simulation result agrees well with the experiment, and it shows that the trajectories of these accelerated electrons change from undulating to helical. Such an all-optical method could be useful for convenient control of the transverse motion of an electron beam, which results in synchrotron radiation from orbit angular momentum.
electron beam laser plasma transverse motion wakefield acceleration 
High Power Laser Science and Engineering
2021, 9(1): 010000e5
Minghua Li 1Liming Chen 1,2,3,*Dazhang Li 4Kai Huang 1,5[ ... ]Jie Zhang 3,6
Author Affiliations
Abstract
1 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
4 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
5 Kansai Photon Science Institute (KPSI), National Institutes for Quantum and Radiological Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
6 Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
7 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
Betatron radiation from laser wakefield accelerated electrons and X-rays scattered off a counter-propagating relativistic electron bunch are collimated and hold the potential to extend the energy range to hard X-ray or gamma ray band. The peak brightness of these incoherent radiations could reach the level of the brightest synchrotron light sources in the world due to their femtosecond pulse duration and source size down to a few micrometers. In this article, the principle and properties of these radiation sources are briefly reviewed and compared. Then we present our recent progress in betatron radiation enhancement in the perspective of both photon energy and photon number. The enhancement is triggered by using a clustering gas target, arousing a second injection of a fiercely oscillating electron bunch with large charge or stimulating a resonantly enhanced oscillation of the ionization injected electrons. By adopting these methods, bright photon source with energy over 100 keV is generated which would greatly impact applications such as nuclear physics, diagnostic radiology, laboratory astrophysics and high-energy density science.
Laser wakefield accelerator Laser wakefield accelerator Gamma ray Gamma ray Hard X-ray Hard X-ray Betatron radiation Betatron radiation Enhancement Enhancement 
Matter and Radiation at Extremes
2018, 3(4): 188

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!